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1. Introduction
Resonators are the basic building blocks of rf filters and oscillators.  Like any other
circuit component, a resonator must be experimentally tested to determine its properties.
The three fundamental characteristics of an rf resonator that have to be determined by
measurement are: (1) resonant frequency, (2) coupling coefficient, and (3) unloaded Q
factor.

Rf resonators used to be tested by specialized instruments, such as grid-dip meters and Q
meters.  Those devices have largely been replaced by more universal ones, network
analyzers.  At microwave frequencies, the Q factor used to be measured by precision
slotted lines, but those, too, have been replaced by network analyzers.

Three possible circuit configurations are used for Q factor measurement: the transmission
type, the reflection type, and the reaction type.  As will be described in more detail later,
for any of these configurations, a 3-point measurement can determine all the three needed
numbers.

A novelty in Q-factor measurement is an overdetermined measurement procedure in
which some 20 or more points are taken by an automatic network analyzer and then
processed by a personal computer.  The results of the data processing provide not only
the three fundamental numbers, but also the estimates on their standard deviations and an
estimate of the coupling losses.

2.  Loaded, unloaded, and external Q
Lumped-element resonators consist of a combination of one capacitor and one inductor,

Fig. 1 Resonators
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such as in Fig. 1(a).  A distributed-element resonator may be a simple half-wavelength
microstrip transmission line, capacitively coupled to the input microstrip line, such as in
Fig. 1(b).  To achieve a higher Q factor, a dielectric resonator can be inductively coupled
to the microstrip line, such as in Fig. 1(c).  For high power handling, it may be necessary
to employ a hollow cylindrical or rectangular cavity, such as in Fig. 1(d), in which the
input is connected through a coaxial transmission line.

Figure 2(a) shows the equivalent circuit, which is appropriate for all the distributed-
element resonators from Fig. 1.  The figure also contains an external source consisting of
Vs and internal impedance, which is matched to the input transmission line.  This source
would represent the network analyzer, which is connected to the input port 1 of the
resonator.  The transmission line of length l, located between input (port 1) and the
location of the coupling (port 2) could be physically very short.  This length is never
known very precisely.

Fig. 2(a)  A resonator and an external circuit

Port 3 is the location of the resonator itself.  The impedance Rs+jXs represents the
transformation properties of the coupling mechanism.  For a loop coupling, Xs is a
positive reactance, and for a probe coupling, Xs is a negative reactance.  The value of Xs

can be considered to be constant in the frequency range of interest (say 1 % on each side
of the resonant frequency).  The reactance of the resonator, represented by a parallel LC
combination, varies with frequency hundreds or even thousands time faster than Xs.

Suppose an observer can enter the resonator and look left and right from port 3.  On the
right hand side, he will see the unloaded resonator.  Its resonant frequency is
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The unloaded Q factor is denoted Q0:
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The conductance G0 represents the dissipation inside the resonator proper.  Typically, this
dissipation is caused by conductor losses and by dielectric losses.  The corresponding
resistance is the inverse value, R0 = 1/G0.
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Fig. 2(b)  Thevenin’s equivalent circuit for port 3

If the observer at port 3 now turns to the left (toward port 1), he sees the series
combination of resistance Rs and the reactance Xs, and behind them a transmission line
terminated in a Thevenin source.  As the source impedance is equal to the characteristic
impedance of the transmission line, the length of the transmission line does not change
the impedance seen by the observer: any length of a transmission line, which is
terminated in a matched load, has the same input impedance, equal to Rc.

Using elementary circuit theory operations, the external circuit that the observer saw, can
be now replaced by a Norton’s equivalent, consisting of a current source in parallel with
the impedance, as shown in Fig. 2(c).  As a further simplification, the impedance
Rc+Rs+jXs can be transformed into admittance Gex+jBex shown in Fig. 2(c), the external
admittance felt by the resonator.

Fig. 2(c)  Norton’s equivalent circuit for port 3
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Now, the observer at port 3 can clearly see that the external circuit influences the
resonator in two ways.  First, the susceptance Bex detunes the resonant frequency.
However, this frequency shift is so small, that it is of little consequence.  The observer
simply has to deal with a new, loaded resonator that has slightly different resonant
frequency.  Second, conductance Gex comes in parallel to G0, thus lowering the overall Q
to a new value QL, which is expressed by writing
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The external Q factor is defined in analogy with (2):
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The ratio of power dissipated in the external circuit to the power dissipated in the
resonator is called coupling coefficient κ.  As both G0 and Gex have common voltage V,
the ratio of powers is proportional to the ratio of conductances:

2
0

2
0 0

ex ex

ex

V G G Q

V G G Q
κ = = = (5)

When an equal amount of power is dissipated in the external circuit as in the resonator
itself, the coupling is said to be critical, and the coupling coefficient in this case is κ=1.
An undercritical coupling means that more power is dissipated in the resonator than in the
external circuit, while an overcritical coupling means that more power is lost in the
external circuit than in the resonator.

By eliminating Qex from (3) with the use of (5), one obtains the relationship between the
unloaded and the loaded Q as follows:

( )0 1LQ Q κ= + (6)

As soon as one starts a measurement, the resonator is loaded by the external circuit (here
the network analyzer), and the measurement will produce the loaded Q, QL.  The stronger
the coupling one creates between the network analyzer and the resonator, the lower the
value of the measured loaded Q.  To find the unloaded Q, the measurement should be
designed in such a way, that it also provides the value of the coupling coefficient κ.
Then, using QL and κ, one computes Q0 from (6).  This is how most Q factor
measurements are done [1-3].

3. Transmission-type measurement
Suppose a manufacturer of the microstrip substrate wants to measure the Q factor of a
transmission line fabricated from his material.  He would probably create a half-
wavelength resonator two-port, something like the one shown in Fig. 3(a).  Port A is the
input, and port B is the output.  The network analyzer is connected at both sides, and the
transmission coefficient S21 is measured.  The equivalent circuit of such a measurement is
shown in Fig 3(b).  For the sake of simplicity, the coupling-loss resistors on the input and
output sides have been ignored.
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Fig. 3(a)  Microstrip half-wavelength two-port resonator

Fig. 3(b)  Thevenin’s equivalent for half-wavelength resonator

As before, one can change Thevenin equivalent into Norton equivalent, and obtain Fig.
3(c).

Fig. 3(c)  Norton’s equivalent for half-wavelength resonator

Suppose the observer at port 3 (the resonator port) wears very special tinted glasses,
tuned to the resonant frequency of the loaded resonator.  He will not see any
susceptances, because they cancel each other at that frequency.  All that he will see are
the three conductances shown in Fig. 3(d).  Since they are connected in parallel, the
corresponding powers are proportional to the conductance values, and one can therefore
define the input and output coefficients as follows:
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The overall coupling coefficient, to be used in (6), is the sum of the two:

1 2κ κ κ= + (9)

Fig. 3(d)  Equivalent circuit for port 3 at resonance

The magnitude of the forward transmission gain S21 displays a familiar resonance effect
as a function of frequency, indicated in Fig. 4.  The loaded Q of the system is inversely
proportional to the difference between the 3-dB frequencies f1 and f2 at each side of the
resonance:
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Fig. 4  Transmission-type measurement, S21 amplitude plot

Now that QL has been determined, one needs to find κ.  That can be computed from the
magnitude S21 at the center frequency.  It follows from Fig. 3(d) that the magnitude of S21

at the resonant frequency is
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Through a careful fabrication procedure, one can make the input and output air gaps
equal to each other, so that

1 2κ κ= (12)
For such a symmetrical coupling, one obtains
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and when this is substituted into (6), the unloaded Q can be computed as follows:
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This is the unloaded Q of the microstrip resonator, the number that the manufacturer of
the substrate wanted to know.

Usually, the magnitude of S21(f0) is expressed in decibels and called insertion loss α.
Since S21 is always smaller than unity, α is a negative number.  Then, to compute S21(f0)
one uses the following expression:

20
21 0( ) 10S f

α

= (15)

For the transmission-type measurement to be accurate, condition (12) must be satisfied,
requiring that the input and output couplings equal each other.  In this measurement, there
is no electrical verification of this equality; one must trust that the mechanical tolerances
are tight enough to insure the equality.  Another important factor to keep in mind is that
the accuracy is seriously reduced when coupling is larger than critical.  This happens
because S21(f0) approaches unity as the coupling becomes strong.  Therefore, the
denominator of (14) becomes a difference of two almost equal numbers, so that even a
small error in S21(f0) will cause a large error in Q0 (even though QL has been measured
accurately).

4.  Reflection-type measurement
For this measurement the resonator only needs one port.  When the network analyzer is
attached to this port, the equivalent circuit looks the same as shown in Fig. 2(a).  The
measurement procedure is well documented in microwave measurement handbooks such
as Ginzton [1], Sucher and Fox [2], or Matthaei, Young and Jones [3].  Although these
books were written before the first network analyzer was made, the principles involved
remain unchanged from the slotted-line and admittance-bridge era.  With few
modifications, the reflection-type measurement can be performed with a network
analyzer [4].  The beauty of this measurement is a perfect circle that the measured
reflection coefficient, plotted on a Smith chart, describes as a function of frequency.  If
you don’t see a perfect circle, there is something wrong with your calibration or your
reference position!
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Figure 5 shows a measured input reflection coefficient S11 (a complex number) as seen on
the polar display of a network analyzer.  The center of the Q circle is rotated by an angle
θ with respect to the real axis of the Smith chart.  Two circuit elements from Fig. 2(a)
may cause this rotation.  First, the length of the transmission line l between the coupling
loop and the reference position (input coaxial connector) rotates S11 by an angle -2βl,
where the symbol β denotes the propagation constant of the line.  Second, the reactance
Xs rotates and also shrinks the circle.  Anyway, the rotation is of no importance for the
determination of QL and κ.  To determine the value of QL it is necessary to identify three
points on the Q circle.  As shown in Fig. 5, the first of those points is center frequency
f0=460.65 MHz, the one identified by Marker 1.  The other two frequencies, f1 and f2,
belong to the two points inclined by φ=45 degrees on each side of the centerline. Then,
the loaded Q is computed by (10).

Fig. 5  Reflection-type measurement, S11 polar plot

To find the coupling coefficient, one has to measure the diameter d of the Q circle.
Weakly coupled resonators will produce small Q circles, and strongly coupled resonators
large ones.  The equation for computing the coupling coefficient κ from the measured
value of d can be found in reference [4]:
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The unit of length in this case is the radius of the Smith chart.  Thus, when d=1, the point
f0 is located at the center of the Smith chart and the coupling coefficient is κ=1 (critical
coupling).

Thus, Ginzton’s reflection-type measurement of Q is also a three-point method.  In its
original version, the Q circle was drawn by hand on the Smith chart point by point.  The
points were identified by their corresponding frequencies.  To find the frequencies of the
φ=±45° it was necessary to graphically construct a linear scale for frequencies
perpendicular to the φ=0 line, and then interpolate between the nearest measured points.
On the polar display of a network analyzer, the angle φ is not available, since the display
gives only information on the inclination angle θ of reflection coefficient S11, measured
from the center of the Smith chart.  A useful program has been developed by Asija and
Gundavajhala [5], which can be used to simplify reading data from a network analyzer
and to perform the subsequent computation of QL and Q0.

5.  Reaction-type measurement
When a dielectric resonator is mounted close to a microstrip transmission line such as in
Fig. 6, it is possible to measure the Q factor directly, by connecting the network analyzer
on both ends of the microstrip.  The configuration shown in Fig. 6 was proposed by
Podcameni et al. [6], and analyzed in more detail by Khanna and Garault [7].

Fig. 6 Reaction-type measurement

The measured value of S11, shown on the polar display of the network analyzer, also
displays Q circles, and the stronger the coupling, the larger the diameter of the Q circle.
Figure 7(a) shows several circles for couplings κ between 0.5 and 2.  Also, the figure
shows φ=±45° lines to read the frequencies f1 and f2 for the determination of QL.
Likewise, if the transmission coefficient S21 is observed on the polar display shown in
Fig. 7(b), the Q circles are clearly visible, but bunched toward the right-hand side.  In
both figures, all the circles are about half the size of those in the reflection-type



10

measurement.  For instance, the largest theoretically possible diameter of the Q circle for
the reaction-type measurement is d=1 (for an infinitely strong coupling), and for the
critical coupling, the diameter is d=0.5.  Although the resolution of the measurement may
be reduced because of the smaller circles, this is nevertheless a convenient procedure.
The resonator is mounted in exactly the same environment as will be used in a typical
oscillator or filter design.

Fig 7(a) Reaction-type measurement,         Fig. 7(b) Reaction-type measurement,
plot of S11 plot of S21

Another advantage of this type of measurement is that the φ=±45° angles coincide with
the θ=±45° angles of the input reflection coefficient S11.  Therefore, the frequencies f1

and f2 can be read directly from the network analyzer display, without the need for an
additional program to change from θ to φ as in [5].

Reference [6] also describes a procedure for scalar reaction-type measurements, using
only the amplitudes of S11 and S21 for determining the loaded and unloaded Q.

6. The role of Xs

According to elementary circuit theory, the value of external susceptance Gex, loading the
resonator in Fig. 2(c), is given by
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Therefore, the coupling coefficient, as defined by (5), becomes
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If  (Xs/Rc) and (Rs/Rc) are negligibly small quantities, then the coupling coefficient is
simply

0

c

R

R
β = (19)

The symbol β has traditionally been used to denote the coupling coefficient when the
equivalent circuit does not contain the series reactance Xs.  For the full equivalent circuit,
which also takes into account that reactance, it is safer to use a new symbol, κ, based on
the definition of coupling coefficient derived from a ratio of powers, as in (5).
Furthermore, symbol β is easy to confuse with the propagation constant of the input
transmission line.

To demonstrate the influence of Xs on the Q-circle size and position, the reflection
coefficient as “seen” by the network analyzer at port 1 in Fig. 2(a) has been computed for
several values of Xs.  For simplicity, the coupling losses were ignored (Rs=0) and the
length of the transmission line was set to zero.  The characteristic impedance of the line
was set to Rc=1 and the resonator losses were represented by R0=1.5.  Four different
values of Xs were shown: Xs= 0, 0.5, 1, and 2.  The resulting Q circles are shown in Fig.
8.

Fig. 8  Reflection-type measurement, influence of Xs

For the vanishing reactance, κ=β=1.5 so that both definitions of the coupling coefficient
give the same result.  The Q circle is centered on the real axis, and its diameter is d=1.2.
The difference between the two definitions becomes noticeable for Xs=0.5, because the Q
circle is rotated, and its diameter is now only d=1.09.  For a large reactance, such as Xs=2,
the diameter shrinks further to d=0.667, and the corresponding coupling coefficient is
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only κ=0.5.  If the inadequate definition (19) were used, the coupling coefficient for all
four cases would be equal to β=1.2.

One has to keep in mind that port 1 is the only terminal that can be either measured, or
incorporated into an external circuit, such as an oscillator or a filter.  Port 3 is simply not
amenable to any measurement.  There is no such thing as an observer who can sneak into
the resonator, sit on port 3 and tell us how big Xs is.  A practical answer to this dilemma
is to accept the coupling coefficient such as predicted by the size d of the measured Q
circle.  To avoid the apparently impossible task of finding the accurate value of Xs, one
should allow the length of the transmission line to be increased by the amount needed to
rotate the observed Q circle back to the real axis.  At this new reference position (which
used to be called “the detuned short position”), one may use the equivalent circuit
without Xs.  At the same time, one should be aware that the loaded resonant frequency fL

is theoretically different from the unloaded resonant frequency f0.  This difference can be
ignored for all practical purposes, at least within the first three digits of f0.

The role of the coupling resistance Rs has a different effect.  Namely, Rs detaches the Q
circle from the outside rim of the Smith chart.  This fact is used in the overdetermined
measurement procedure to estimate the severity of coupling losses, as will be described in
what follows.

7. Overdetermined procedures

Common to all the measurement procedures described until now is the fact that one has
to measure manually some S parameter at frequencies f0, f1 and f2 and then compute the
values of QL and κ.   These procedures may commonly be called "three-point
procedures.”  They were all developed during the era of analog instrumentation.

Today’s network analyzers are all computer controlled and therefore digital instruments.
They can measure almost instantly up to 1600 frequency points and either store them, or
deliver them to a file to be read by another computer.  Data processing can then be used
to determine the center and the diameter of the circle on the Smith chart, interpolate the
exact position of frequency points f0, f1, and f2, and utilize any appropriate equation for an
accurate computation of QL and κ.  Because more than three points are needed in such an
operation, these procedures may be called “overdetermined.”  Typically, 20 or more
points are used, but any number larger than three should work.  Early attempts of
overdetermined Q-factor measurements can be found in [8-10].  General-purpose,
commercially available programs QZERO and SCALARQ are distributed with the book
Q Factor [11].  Both programs are intended for processing of reflection-type
measurements.

The input data for the QZERO program should be arranged in a file that contains three
columns of numbers (in ASCII format) as follows:

f     Real(S11)     Imag(S11)
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Any network analyzer automatically chooses an equidistant set of frequencies, but
QZERO can also operate when the frequencies are not equally spaced.  For instance, if
one or several of the data look suspicious, that particular data line, or even a block of data
lines, can be erased from the file without any detrimental effect on QZERO.

The program first finds an estimate of the loaded resonant frequency fL, and then
computes three complex coefficients a1, a2, and a3 in the following equation:

1 2
11
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a t
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+

(20)

Variable t is the relative frequency detuning with respect to the loaded resonant
frequency fL defined as follows:
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The procedure is iterated several times: each time a new value of the weighting factor is
computed to emphasize the points close to the resonance, and to suppress the influence of
points far from the resonance.  The resulting values of QL, Q0, κ, and fL are displayed on
the left-hand side of the Smith chart, as seen in Fig. 9.  In that figure, one can see the
input data (indicated by black dots), and the best-fit circle (plotted by a solid line).

Fig. 9  Overdetermined measurement, display of QZERO program
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Two characteristic points on the Q circle, namely the fL and the “detuned short” are
indicated by larger dots, and the center of the Q circle is indicated by a smaller dot.  A
quick glance at the Smith chart is sufficient to check whether the data fit is satisfactory,
or whether something is wrong.

A side benefit of an overdetermined procedure is the possibility to statistically estimate
the standard deviations for all the quantities of interest.  For instance, the value of QL in
Fig. 9 is estimated to be 4585.7 ± 6.8, while Q0 is 7500.7 ± 15.6.  It should be
emphasized that these uncertainties describe only the random errors and not the
systematic errors.  The systematic errors of various models of network analyzers differ
from each other, and they also depend on the frequency of operation.  A separate analysis
of systematic errors would be required in order to see what effect they have on the
resonator characteristics.  Program QZERO does not have the provision for such an
analysis of systematic errors.

As mentioned in the previous section, the coupling losses (modeled by the presence of
resistor Rs) can cause the Q circle to be detached from the perimeter of the Smith chart.
Figure 10 shows the effect of coupling losses when Rs=0.04, Xs=0.8, R0=0.75 and Rc=1.

Fig. 10  Reflection-type measurement, effect of lossy coupling

Once the center and diameter d of the Q circle are known, it is possible to evaluate
diameter d2 of an auxiliary circle which is tangential both to the Q circle and to the Smith
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chart perimeter.  The diameter d2 is now used to find the overall coupling coefficient κ
[11]:

2
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1
d
d

κ =
−

(22)

For the special case when coupling losses are negligible, the auxiliary circle coincides
with the perimeter of the Smith chart, so that d2=2, and (22) becomes identical with (16).

For carefully manufactured resonators, the coupling losses should be small, of the order
of Rs/R0 < 0.01.  The overall coupling coefficient of a reflection type resonator now
consists of two parts:

1 2κ κ κ= + (23)

where κ1 is the coupling that describes the power loss in the external circuit, and κ2

describes the power loss in the coupling mechanism (this can be a loop, probe, gap
capacitance, waveguide iris or similar).  The ratio of κ2 to κ1 is proportional to the ratio
of resistances Rs and Rc:
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The value of κ2=0.00493 is also shown on the display of QZERO in Fig. 9.  This number
is clearly an approximation, and the program does not attempt to find its standard
deviation.  Nevertheless, the value may be of use to a design engineer who wants to
compare several different versions of coupling to the same resonator.  In the example
shown, approximately 0.5 percent of the total power is dissipated in the resistance of the
coupling loop.

The program SCALARQ is intended for processing data taken with a scalar network
analyzer, that measures only the amplitude (but not the phase) of the reflection coefficient
S11.  The theory of operation can be found in [12].  An example of the display obtained by
SCALARQ can be seen in Fig. 11.  This example utilizes the same input data as in Fig. 9,
except that the phase information is ignored.  The measured data points are again shown
by black dots, and a solid line shows the best-fit curve.  Since the phase of the reflection
coefficient is not known, one cannot plot the results on a Smith chart.  Thus, one cannot
tell whether this reflection coefficient represents an overcoupled or an undercoupled case.
There are two possible interpretations of the measured data, and the display of
SCALARQ shows both of them.  Another, independent, experiment must be performed
in order to decide which of the two answers is correct.  Except for this limitation, the
accuracy of the results obtained by SCALARQ is of the same order as the one obtained
by QZERO.  The resulting Q0=7500.9 for the undercoupled case agrees very well with
the value Q0=7500.7 obtained in Fig. 9.
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Fig. 11 Overdetermined measurement, display of SCALARQ program

Finally, it is good to keep in mind another advantage of the overdetermined procedures,

namely their robustness to noisy data.  In Fig. 12 a random noise of 0.04 has been

artificially added to each of the input data from Fig. 9.  In spite of the added noise, the

results computed by QZERO are still very close to those obtained without noise.  On the

other hand, the estimated uncertainties are all larger than before, as expected.
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Fig. 12  Reflection-type measurement, effect of noisy data

References:
[1] E. L. Ginzton, Microwave Measurements. New York: McGraw-Hill, 1957.  See
Chapter 9.
[2] M. Sucher, and J. Fox (eds.),  Handbook of Microwave Measurements. New
York: Polytechnic Press, 1963.  See Chapter 7.
[3] G. L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, Impedance-
Matching Networks, And Coupling Structures. New York: McGraw-Hill, 1964.  See
Chapter 11.
[4] D. Kajfez and E. J. Hwan, “Q-factor measurement with network analyzer,” IEEE
Trans. Microwave Theory Tech., vol. MTT-32, pp. 666-670, July 1984.
[5] A. Asija and A. Gundavajhala, “Quick measurement of unloaded Q using a
network analyzer,” Rf Design, pp. 48-52, October 1994.
[6] A. Podcameni, L. F. M. Conrado, and M. M. Russo, “Unloaded quality factor
measurement for MIC dielectric resonator application,” Electronics Letters, vol. 17, pp.
656-658, 1981.
[7] A. P. S. Khanna and Y. Garault, “Determination of loaded, unloaded and external
quality factors of a dielectric resonator coupled to a microstrip line,” IEEE Trans.
Microwave Theory Tech., vol. MTT 31, pp. 261-264, March 1983.



18

[8] W. P. Wheless and D. Kajfez, “Microwave resonator circuit model from
measured data fitting,” 1986 IEEE MTT-S Symposium Digest, pp. 681-684, Baltimore,
June 1986.
[9] M. C. Sanchez, E. Martin, and J. Zamarro, “New vectorial automatic technique
for characterisation of resonators,” IEE Proc. H., vol. 136, pp. 145-150, April 1989.
[10] C. P. Hearn, P. G. Bartley, and E. S. Bradshaw, “A modified Q-circle
measurement procedure for greater accuracy,” Microwave Journal, vol. 36, pp. 108-113,
October 1993.
[11] D. Kajfez, Q Factor, Oxford, MS: Vector Forum, 1994.
[12] D. Kajfez, “Q factor measurement with a scalar network analyser,” IEE Proc.-
Microw. Antennas Propag., vol. 142, pp. 369-372, October 1995.

About the author

Darko Kajfez is emeritus professor of electrical engineering at the University of
Mississippi.  He can be reached by e-mail at eedarko@olemiss.edu.  His mailing address
is:

Dr. Darko Kajfez
P. O. Box 757
University, MS 38677
USA.


